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In a nonequilibrium system, a constant flux relation �CFR� expresses the fact that a constant flux of a
conserved quantity exactly determines the scaling of the particular correlation function linked to the flux of that
conserved quantity. This is true regardless of whether mean-field theory is applicable or not. We focus on
cluster-cluster aggregation and discuss the consequences of mass conservation for the steady state of aggrega-
tion models with a monomer source in the diffusion-limited regime. We derive the CFR for the flux-carrying
correlation function for binary aggregation with a general scale-invariant kernel and show that this exponent is
unique. It is independent of both the dimension and of the details of the spatial transport mechanism, a property
which is very atypical in the diffusion-limited regime. We then discuss in detail the “locality criterion” which
must be satisfied in order for the CFR scaling to be realizable. Locality may be checked explicitly for the
mean-field Smoluchowski equation. We show that if it is satisfied at the mean-field level, it remains true over
some finite range as one perturbatively decreases the dimension of the system below the critical dimension,
dc=2, entering the fluctuation-dominated regime. We turn to numerical simulations to verify locality for a
range of systems in one dimension which are, presumably, beyond the perturbative regime. Finally, we illus-
trate how the CFR scaling may break down as a result of a violation of locality or as a result of finite size
effects and discuss the extent to which the results apply to higher order aggregation processes.
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I. INTRODUCTION AND MOTIVATION

Consider a collection of particles undergoing some spatial
transport process which, upon encountering each other, coa-
lesce irreversibly with some probability. Such a situation
arises in a great variety of seemingly unrelated branches of
science �see �1� for an overview�. Some of the most obvious
examples are found in astrophysics �2�, aerosol physics �3�,
and polymer chemistry �4�. Less obvious examples arise
from granular media �5�, the structure of drainage networks
�6,7�, and sandpile models of self-organized criticality �8�.
This diverse range of applications is one reason why models
of systems of diffusing particles which aggregate upon con-
tact have been extensively studied since the seminal work of
Smoluchowski laid the foundations for their analysis. A sec-
ond reason for the enduring interest shown by the scientific
community in aggregation models is that they provide simple
examples of a surprising array of nontrivial phenomena in
nonequilibrium statistical mechanics making them an attrac-
tive theoretical proving ground.

Two situations are commonly encountered, depending on
the application. One may start with a specified initial distri-
bution of cluster sizes and study how it decays in time. This
is sometimes referred to as free aggregation. Alternatively
one may start with an empty system and add monomers at a
given rate. This is called aggregation with a source. Due to
irreversibility of the coagulation process, free aggregation is
an entirely dynamic problem with no stationary state. On the

other hand, aggregation with a source may produce a station-
ary distribution of particle sizes in the limit of large time.
Stationarity comes about as follows: The rate of decrease of
the density of clusters of a given size via coagulation to form
larger ones is balanced by the generation of clusters of that
size via coagulation of smaller ones. Such a balance is pos-
sible only because the source continually replenishes the
available pool of small clusters. Clearly such a stationary
state is not an equilibrium state since there is no detailed
balance. Rather it is a flux state characterized by a constant
flux of mass through the space of cluster sizes. On a techni-
cal note, since both diffusion and aggregation conserve total
mass, the constant influx of monomers results in a linear
increase in the average mass. While this driving occurs at the
smallest mass in the problem, the aggregation process trans-
fers this mass to larger and larger mass scales. Thus, strictly
speaking, such systems are quasistationary at large times:
Small masses reach a stationary distribution but time-
evolution proceeds indefinitely at the largest masses. To at-
tain a truly stationary state, one should introduce a cutoff at
some large cluster size above which clusters are removed
from the system. In this paper, we concern ourselves exclu-
sively with aggregation problems with a source.

The most basic quantity of interest is the average mass
density, �N�m ,x , t��, which tells us the average number of
clusters of a given mass, m. Typically, a system of aggregat-
ing particles exhibits two regimes of behavior as a function
of the spatial dimension. A critical dimension, normally two
for systems undergoing diffusive transport, separates these
regimes. In higher dimensions, the dynamics is typically re-
action limited and a mean-field description is appropriate.
This mean-field description is given by the Smoluchowski
kinetic equation which describes the time evolution of
N�m ,x , t�. In lower dimensions, the dynamics is typically
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diffusion limited. Diffusive fluctuations are strong and a
mean-field description is no longer possible. A huge amount
is known about the average mass density in the mean-field
case �9� from exact analyses �10� and extensive numerical
simulations of the Smoluchowski equation. Relatively less is
known about the mass density in the diffusion-limited regime
but several models have been solved exactly or treated ap-
proximately by field-theoretic methods �11,12�. Almost noth-
ing is known about higher order correlation functions in the
diffusion-limited regime, despite the fact that they encode
the details of the fluctuations which dominate the dynamics.
This paper concerns itself with such higher order correlation
functions, albeit some rather special ones.

The special correlation functions which we consider, can
be referred to as the flux-carrying correlation functions. For a
given aggregation model with source which attains a
constant-flux stationary state at large times, there is a particu-
lar correlation function associated with mass transfer. In the
turbulence literature, where transfer of energy is analogous
to transfer of mass, it is very well known that constancy of
the energy flux determines exactly the scaling of the flux-
carrying correlation function �see Chap. 6 of �13�, for ex-
ample�. This fact is the basis for the Kolmogorov 4 /5 law for
three-dimensional hydrodynamic turbulence �and the corre-
sponding 3 /2 law in two dimensions �14��. There are analo-
gous results for other turbulent systems where other quanti-
ties may be conserved such as helicity �15� or �in the case of
two-dimensional turbulence� enstrophy �14�. While the 4 /5
law has become central to the modern understanding of tur-
bulence, the fact that a similar exact result is available for
other nonequilibrium systems, in particular for aggregation
systems, has hardly been taken advantage of. The purpose of
the present paper is to address this issue. In previous work
�16�, we showed how a conservation law leads to an exact
scaling exponent for the flux-carrying correlation function
for a broad class of nonequilibrium systems which included
aggregation, referring to such a constraint as a “constant flux
relation” �CFR�. In the present paper we focus entirely on the
consequences of CFR for aggregating particle systems, leav-
ing the original hydrodynamic analogy behind. In the process
of verifying the CFR for a broad set of aggregation models in
the diffusion-limited regimes we will present a number of
somewhat counterintuitive numerical results which would be
very difficult to understand without any prior understanding
of the CFR.

The layout of the paper is as follows. We first define the
model and give a heuristic derivation of the CFR scaling
�Sec. II�. We then provide an accurate derivation �Sec. III�
which makes explicit the assumptions involved, in particular
the assumption of locality which we then discuss in detail
�Sec. IV�. Section V then reports the results of a large num-
ber of numerical simulations which verify the CFR scaling
for a range of aggregation kernels, expose finite-size effects,
test the locality condition in the diffusion-limited regime in
one dimension where an analytic approach is lacking, and
demonstrate the lack of dependence of the CFR scaling on
the details of the diffusion. Finally we extend the discussion
to higher order aggregation processes �Sec. VI�. We close
with a brief summary of the results.

II. MODEL DEFINITION AND HEURISTIC CFR

Consider a d-dimensional hypercubic lattice occupied by
point size particles carrying a positive mass. Multiple occu-
pancy of a site is allowed. Given a certain configuration, the
system evolves in time via the following processes.

Diffusion. A particle hops with a mass-dependent diffu-
sion rate D�m� to a randomly chosen nearest neighbor.

Coagulation. Two particles of masses m1 and m2 on the
same lattice site coagulate at rate ��m1 ,m2� to form a particle
of mass m1+m2.

Input. Particles of mass m0 are injected at rate J /m0 uni-
formly and independently in space.

The initial condition is one where the lattice is empty. We
shall call this model the mass model �MM�.

We will restrict ourselves to the case where the reaction
rate ��m1 ,m2� is a homogeneous function of its arguments,
i.e.,

���m1,�m2� = ����m1,m2� , �1�

where � is the homogeneity exponent. The diffusion con-
stant, D�m�, will be assumed to have the property

D�m�
D�m0�

= � m

m0
��

. �2�

Thus, in addition to the different rates, the model has two
parameters: The homogeneity exponent � and the diffusion
exponent �. In the large time limit, as described in the intro-
duction, this model tends to a statistically stationary state
characterized by a constant average flux of mass from small
clusters to large ones.

In �16� we presented quite a general argument to deter-
mine the scaling of the flux-carrying correlation function for
a broad class of nonequilibrium systems which reach a con-
stant flux stationary state. In this paper, in the interest of
clarity, we will briefly review the argument heuristically for
the specific case of particle aggregation.

Schematically �we shall write an accurate expression in
Sec. III�, the transfer of mass between coalescing clusters is
described by an equation of the form

�

�t
�mNm�t�� =

�Jm

�m
	
 dm1dm2m��m1,m2�C�m1,m2��0;1,2,

�3�

where �0;1,2 is shorthand notation for ��m−m1−m2�. The
right-hand side defines the mass flux, Jm, in the space of
cluster sizes. C�m1 ,m2� is proportional to the probability of
having two clusters with masses m1 and m2 meet at the same
point in space. This is the flux-carrying correlation function
since it mediates the transfer of mass in the system. Note that
the flux-carrying correlation function is not an esoteric ob-
ject. It has a clear and intuitive physical meaning

In the statistically stationary state,
�Nm�t�

�t =0 so that Jm is a
constant, independent of m. Simply counting powers of m
would then lead us to expect that

C�m1,m2� 	 m−�−3. �4�
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This heuristic scaling argument is the CFR at the most basic
level: Mass conservation fixes the scaling of the flux-
carrying correlation. The remainder of the paper will be de-
voted to making this heuristic argument precise and identi-
fying its limitations.

III. IMPROVING ON THE HEURISTIC CFR

In this section we arrive at Eq. �4� more carefully. Starting
from the lattice model, it is relatively straightforward to
write the evolution equation for the different correlation
functions. A full exposition can be found in �12�. Skipping
the details, we write directly the equation for �N�m ,x� , t��, the
average number of particles of mass m at position x� at time t,

� �

�t
− D�m��2��N�m��

=
J

m0
��m − m0� + 


0

�

dm1dm2��m1,m2�C�m1,m2��0;1,2

− 

0

�

dm1dm2��m,m1�C�m,m1��2;01

− 

0

�

dm1dm2��m2,m�C�m2,m��1;20. �5�

For simplicity, we suppress x� and t dependences and adopt
the reduced notation for the � functions defined after Eq. �3�.
C�m1 ,m2�, the flux-carrying correlation function, is defined
as

C�m1,m2� = �N�m1,x�,t�N�m2,x�,t��

−
1

�xd��m1 − m2��N�m1,x�,t�� , �6�

�x being the lattice spacing. Let us explain the terms in Eq.
�5� one by one.

The �2 term accounts for particle diffusion which may be
mass dependent. For spatially homogeneous statistics, this
term is zero. The first term on the right-hand side accounts
for influx of particles of mass m0. The remaining terms ac-
count for aggregation processes. To explain the meaning of
C�m1 ,m2�, we first consider how it relates to the mean-field
Smoluchowski equation. Mean-field theory requires two as-
sumptions. First, correlations are absent so we may write
�N�m1 ,x� , t�N�m2 ,x� , t�� as a simple product of densities,
�N�m1���N�m2��. Second, densities are high so we may ne-
glect the �N�m1�� term relative to �N�m1���N�m2��. In the
diffusion-limited regime, C�m1 ,m2� has an important proba-
bilistic interpretation. Writing the averaging process explic-
itly,

C�m1,m2� = �
N1,N2=1

�

P�N�m1,x�� = N1,N�m2,x�� = N2�

	 �N1N2 − �m1,m2
N1� .

This is the average number of pairs of particles with masses
m1 and m2 on a site, with the � function accounting for

double counting of particles of equal mass. In the low den-
sity �diffusion-limited� regime,

C�m1,m2� � P�N�m1,x�� = 1,N�m2,x�� = 1� , �7�

the probability that two particles of masses m1 and m2 meet
at a site. Thus the flux-carrying correlation function is not an
esoteric object and has a very natural physical meaning. Hav-
ing understood the meaning of C�m1 ,m2�, the second term
on the right-hand side of Eq. �5� accounts for the creation of
particles of mass m at x� through aggregation of two particles
at x�. The third and fourth terms account for the decrease of
N�m ,x� , t� through aggregation with other particles. These lat-
ter two terms are identical under relabeling �m1 ,m2�
→ �m2 ,m1� and are usually written as a single term. We write
them this way for reasons which will become obvious below.

To simplify the equations, we introduce I�m1 ,m2 ;m� de-
fined as

I�m1,m2;m� = ��m1,m2�C�m1,m2��0;1,2. �8�

As already mentioned, in Eq. �5� the diffusion term drops
out by spatial homogeneity. Then, for m
m0 we can write
Eq. �5� as

��N�m��
�t

= 

0

�

dm1dm2�I�m1,m2;m� − I�m2,m;m1�

− I�m,m1;m2�� . �9�

In the steady state, we set the left-hand side to zero. To solve
this equation, we need to balance out the plus and the minus
terms on the right-hand side. As written, it is difficult to see
what the solution is because each term comes with a different
� function. The balance can be made explicit by the Zakaha-
rov transform �ZT� �17�.

Leave the first term as it is. Make the following transfor-
mation of the second integral:

m1 →
mm1

m2
, �10�

m2 →
m2

m2
. �11�

The Jacobian of the transformation is �m /m2�3. Perform the
analogous transformation of the third integral �see �18��.
Now look for homogeneous solutions, i.e.,

C��m1,�m2� = �hC�m1,m2� . �12�

Using this and the homogeneity of �, we obtain

0 = 

0

�

dm1dm2I�m1,m2;m��my − m1
y − m2

y� , �13�

where y=−h−�−2.
Due to the � function in Eq. �8�, I is nonzero only when

m1+m2=m. If the term in the square brackets in �13� is zero
when I is nonzero, then the equation is satisfied. Thus, y=1
is a solution. This implies
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h = − � − 3. �14�

It can be easily shown that this is the unique homogeneous
stationary solution of Eq. �9�. Introducing rescaled variables,
x1=m1 /m and x2=m2 /m and using the assumed homogeneity
of C�m1 ,m2�, Eq. �13� can be rewritten as

0 = m1+h+�+y

0

1

dx1dx2I�x1,x2;1��1 − x1
y − x2

y� . �15�

Due to the � function in I �x1, x2; 1�, the integrand is zero
unless x1+x2=1. When x1+x2=1, the integrand clearly van-
ishes for y=1. To show that this is the only value of y for
which the integral is zero, we show that for y� the integrand
is sign definite on the domain of integration so that the inte-
gral is not zero. From the definition, Eq. �8�, I �x1, x2; 1� is
clearly positive. It remains to consider the function
f�x1 ,x2�=1−x1

y −x2
y. For y
1 the fact that xi� �0,1� implies

that xi
y �1 so that x1

y +x2
y �x1+x2=1. Thus f�x1 ,x2�
0 and

the integrand is everywhere positive. Likewise, for y�1, xi
� �0,1� implies that xi

y 
1 so that x1
y +x2

y 
x1+x2=1. Thus
f�x1 ,x2��0 and the integrand is everywhere negative. Thus,
for y�1 the integral does not vanish and the only solution is
y=1.

One may make a curious observation: The diffusion con-
stant does not play any role. This is counter to the usual
intuition in reaction-diffusion systems which holds that dif-
fusion is unimportant for dimensions greater than upper criti-
cal dimension and all important for dimensions lower. Here,
we have shown that the two-point correlation function is
independent of dimension and of the spatial transport mecha-
nism.

It must be pointed out that these manipulations are correct
provided each of the integrals in the evolution equation are
convergent. This condition referred to as the locality condi-
tion must be checked separately. This will be discussed next.

IV. LOCALITY: WHEN IS CFR REALIZABLE?

To obtain the formal scaling solution �Eq. �14�� for the
evolution equation �Eq. �5��, some implicit assumptions were
made. These assumptions will be referred to as locality con-
dition, the terminology being borrowed from wave turbu-
lence. Unless, these assumptions can be proved or checked
numerically, the scaling solution should not be expected to
hold. In this section, we explain the locality condition in
detail.

For the scaling solution with exponent given by Eq. �14�
to be physically realizable, it must yield a convergent inte-
grand on the right-hand side of Eq. �5�, before any changes
of integration order are made. Otherwise, divergences cancel
leaving a finite contribution.

To study this, let us write the two point function as

C�m1,m2� = �m1m2�h/2��m1

m2
� , �16�

thus introducing the dimensionless scaling function ��x�.
��x� has the symmetry property ��x�=��x−1�. To check con-
vergence, it is not enough to know just the degrees of homo-

geneity but rather we require to know limiting behavior of
various quantities in the integrand. Suppose

��m1,m2� 	 m1
m2

� for m2 � m1, �17�

��x� 	 x� for x � 1. �18�

The exponents  and � are determined by the model under
consideration and must satisfy +�=�. The behavior of the
scaling function ��x� as x→0, as determined by the expo-
nent �, is something which we do not a priori know.

The support of the integrand in Eq. �5� is shown in Fig. 1.
We may integrate once and consider the integral as an inte-
gral in m1 only. By scale invariance, we need to check con-
vergence only at the endpoints of the range of integration.
The analysis was done in Ref. �18� in the mean-field limit.
Following the analysis of �18�, as m1→�, the behavior of
the integrand is given by

��m,m1��mm1�h/2�� m

m1
� 	 mm1

��mm1�h/2� m

m1
��

.

The integral is convergent at infinity if

− h/2 
 � + 1 − � . �19�

For the behavior at m1→0, there is a cancellation of leading
order terms,

��m1,m − m1�C�m1,m − m1� − ��m1,m�C�m1,m�

	 m1
�

�x
���m1,x�C�m1,x��x=m + o�m1

2�,

	 m1
�

�x
m1

x��m1x�h/2��m1

x
���

x=m
+ o�m1

2� .

The integral is convergent at 0 if

− h/2 � 2 +  + � . �20�

Putting together Eq. �19� and �20�, a convergent collision
integral requires that the interval ��+1−�, +2+�� should
have positive width. The width of this interval is 2�+−�
+1. Thus a convergence requires

� 

1
2 �� −  − 1� . �21�

It is easy to show that if this interval exists, the exponent
−h /2 lies within it assuring the validity of the CFR solution.

δ(m
1 +

m
2 −

m
)

δ(
m

1
+
m
−m

2
)

δ(
m

+
m

2
−m

1
)

m1

m2

FIG. 1. The support of the integrand of Eq. �5� in the �m1 ,m2�
plane.
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At the level of mean-field theory, �=0 since C�m1 ,m2� is
simply proportional to the product of the one-point densities.
This case was worked out in detail in Ref. �18� and is con-
sistent with Eq. �21�.

Thus the rigorous verification of CFR in MM requires the
knowledge of the small-x behavior of the scaling function.
The latter can be often studied using perturbative methods.
For instance, consider constant kernel MM, =�=0. If di-
mension of the physical space is two, mean-field approxima-
tion is applicable, perhaps modulo logarithmic corrections.
Within mean-field approximation, �=0 and criterion Eq.
�21� is satisfied. Hence, CFR holds in two dimensions, mean-
ing in this case, C�m1 ,m2�	m−3, and logarithmic corrections
are absent. Consider now constant kernel MM in d=2−�,
where �
0. The dynamics of the model is governed now by
a fixed point of renormalization group. The order of the fixed
point is �. Scaling exponents can be now computed using �
expansion. As ���=0�=0, ����=�1�+O��2�, where �1 is a
constant. Assuming that �1�0, one can rewrite locality cri-
terion as

��1 
 − 1
2 , �22�

which is satisfied, if � is small enough. In this case all �
corrections to h=−3 vanish and CFR holds.

This perturbative argument demonstrates that systems
which are local at the mean-field level remain so for some
time as one decreases the physical dimension into the
diffusion-limited regime. It does not tell us much about
whether locality holds by the time one reaches the next
physically relevant, integer-valued dimension below the
critical dimension since this is presumably beyond the per-
turbative regime. In general, this is a difficult problem. The
only case which we are aware of which can be handled ana-
lytically is the constant kernel ��=0�. It may be shown to be
true for d
2 where mean field holds �18�, in d=2 due to a
cancellation of logarithmic corrections �12� and in d�2 by
an exact solution �19�.

Lacking an analytic approach for other kernels, one must
rely on numerical simulations to measure the value of � for
particular systems. We perform a systematic numerical in-
vestigation of locality in one dimension for several kernels in
Sec. V C.

V. NUMERICAL SIMULATIONS OF CFR

A. Numerical measurements of CFR exponent

In this section, we present results of numerical simula-
tions directly measuring the exponent h given in Eq. �14�. It
is in one dimension that the effects of fluctuations are the
strongest. Hence, if the mean-field scaling predicted by CFR
is violated, then it will be violated in one dimension too. For
this reason, all the numerical results that we show will be
Monte Carlo simulations for one-dimensional lattices.

In our simulations we investigated the following represen-
tative kernels:

��m1,m2� = m1
� + m2

�, �23�

��m1,m2� = �m1m2��/2, �24�

��m1,m2� = max�m1,m2�� min�m1,m2�, �25�

which we shall refer to as the additive, multiplicative, and
mixed kernels, respectively. As far as the value of h was
concerned, the results were identical for all three kernels.
Hence, unless stated otherwise, our figures present results
only for one of them, namely the additive kernel, Eq �23�.

What is convenient to measure in simulations is not
�N�m1�N�m2��, but the quantity,

�2�m� = 

m

�

dm1�N�m�N�m1�� . �26�

CFR predicts that �2�m� scales as �2�m�	m−2−�.
In Fig. 2, the variation of �2�m� with m is shown for �

=0,−0.10,−0,25,−0 ,50. The solid lines are the CFR results.
As can be seen, there is excellent agreement, confirming that
CFR holds when ��0. Figure 3, shows the variation of
�2�m� with m for �=0.50,0.75,1.00,1.50. The solid lines
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FIG. 2. The variation of �2�m� with m is for �=−0.5 �top
curve�, −0.25, −0.10,0 �bottom curve�. The solid lines correspond
to the exponent as predicted by CFR �see Eq. �14��. Curves have
been slightly shifted for clarity.
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FIG. 3. The variation of �2�m� with m for �=0.50 �top curve�,
0.75, 1.00, 1.50 �bottom curve�. The solid lines correspond to the
exponent as predicted by CFR �see Eq. �14��. The dotted line cor-
responds to exponent for �=0. Curves have been slightly shifted for
clarity.
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are the CFR results. The CFR exponent is obtained for small
and intermediate masses but there is a clear crossover to
another behavior at large masses. This can be understood as
a finite-size effect which we shall discuss in Sec. V B.

At this point it is appropriate to make some comments on
the correspondence with mean-field theory. For the additive
kernel, Eq. �23�, at the mean-field level it is believed �20�
that �=1.0 corresponds to the threshold for instantaneous
gelation so that analytical understanding of the solutions of
the Smoluchowski equation for �
1 is very difficult. Not-
withstanding the crossover to another regime at large masses,
it is very interesting that the CFR exponent is observed over
some considerable range even for �
1. To the best of our
knowledge, nothing is known about the behavior of gelling
kernels in the diffusion-limited regime or in the presence of a
monomer source. In this light, the results of Fig. 3 pose
many interesting questions such as whether there is any rem-
nant in the diffusion-limited regime of the catastrophic sin-
gularity which occurs in the mean-field equation at �=1.

B. Finite-size effects

Let us consider why the lattice size should affect the CFR
scaling. At this point it is useful to recall two things. First,
the recurrence property of random walks plays a crucial role
in determining the statistics of aggregation in the diffusion-
limited regime. Due to recurrence, heavy particles develop
“zones of exclusion” around them as they grow, resulting in
strong anticorrelations between heavy particles. Second, re-
call that the CFR exponent quantifies the decreasing prob-
ability of two heavy particles meeting each other. Due to the
presence of zones of exclusion, this probability decreases
faster for heavy particles than the product of one-point den-
sities would suggest.

Although zones of exclusion grow larger as particles get
heavier, in an infinite system there are always enough heavy
particles to maintain the CFR scaling over all mass scales. In
a finite system, however, these zones of exclusion become
limited by the system size eventually. Once this happens,
heavy particles start to meet each other more often than
would be expected from CFR since they can no longer grow
their zones of exclusion any larger. Thus a finite-size cross-
over occurs and results in a shallower scaling as evident from
Fig. 3. No such crossover occurs for the ��0 cases shown
in Fig. 2 since for ��0 large mass clusters become progres-
sively less reactive which acts to counterbalance the growth
of zones of exclusion due to recurrence.

The argument above does not explain why finite-size ef-
fects should lead to a the scaling corresponding to �=0 in-
dicated in Fig. 3. We suggest the following heuristic argu-
ment. For a finite system size, C�m1 ,m2� for “large” masses
is contributed to by configurations consisting of two heavy
particles which have been in the system for times �L2, so
that they are strongly anticorrelated. Hence these two par-
ticles effectively interact with each other at infinite rate, with
effective diffusive jumps of the size equal to system size.
Hence C�m1 ,m2� behaves as if �=0 at these masses. Since
the mass flux is carried by the meetings of these super heavy
particles, it is presumably highly intermittent. It is then in-

tuitive that the constant flux argument should fail to describe
this regime.

Given that we expect to see CFR scaling for small masses
and �=0 behavior for large masses, we expect that �2�m ,L�
should have the form

�2�m,L� =
1

L1+2/� f� m

L1/��, � 
 0, �27�

where the scaling function f�x� varies as f�x�	x−2−� when
x→0 and f�x�	m−2 when x�1. The crossover mass mc is
given by mc

�	L, or mc	L1/�.
In Fig. 4, we study the variation of �2�m ,L� with m for

fixed � and different L. The � value is chosen to be �=1.5.
As expected from the preceding discussion, the crossover
point moves to the right-hand side with increasing L. In the
inset, the data is scaled according to Eq. �27� and excellent
collapse is obtained. The large and small x behavior of the
scaling function behaves as predicted.

C. Numerical validation of locality criterion

As stressed in Sec. IV, aside from a couple of special
cases we do not know whether the locality criterion is satis-
fied in one dimension or not. We now present numerical
measurements of the exponent � in Eq. �17� to address this
issue. We choose our lattice size sufficiently large to avoid
any question of the finite-size effects discussed in the pre-
ceding section influencing the exponents. We use the mixed
kernel, Eq. �25� so as to be able to vary � and  inde-
pendently. What is measured numerically is �N�m1�N�m2��
when m1 is kept fixed and m2�m1. Then �N�m1�N�m2��
	m1

h/2+�m2
h/2−�. In our simulations we keep m1 fixed at 5m0

and take m2 large and measure �−h /2. The results of a sys-
tematic set of numerical experiments are shown in Table I.
What one sees is that �−h /2 is independent of � and depen-
dent only on �. The numerics suggest that

� −
h

2
=

4

3
+ max��,0� . �28�
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FIG. 4. The lattice size dependence of �2�m ,L� is shown
for n=3 and �=1.5. The different lattice sizes are L
=100,1000,10 000. The crossover moves to the right-hand side
with increasing L. Inset: The curves are scaled as in Eq. �27�. The
straight lines correspond to slopes −7 /2 and −2.
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If this is true, then �=−1 /6+ ��−� /2 when �
0, and
�=−1 /6−� /2 when ��0. Comparing with the locality con-
dition in Eq. �21�, we see that it is always satisfied. Based on
numerical evidence we therefore conclude that the spatially
extended system is able to adapt itself to variations in the
exponents  and � so that the locality criterion is always
satisfied.

D. Lack of dependence on spatial transport mechanism

An important prediction of CFR is the lack of dependence
on the diffusion constant. In Fig. 5, we show two sets of data
for the same kernel but different diffusion constants. In one
the diffusion constant is independent of mass. In the other it
goes as D�m��m−1/2 such that �=−1 /2. As can be seen,
�2�m� scales exactly the same. However, as shown in the
inset, the one-point distribution function �N�m�� scales dif-
ferently with �.

VI. HIGHER-ORDER AGGREGATION PROCESSES

Higher order aggregation processes may be considered
where coalescence can only occur when n−1
2 particles

meet at a single site. Although such processes have fewer
physical applications than the binary case �n=3�, they have
been suggested as an appropriate model of certain polymeric
reactions �21� and have received some attention in the litera-
ture �10,22,23�. From a theoretical perspective, such systems
provide an illustrative example of the breakdown of the CFR
scaling due to a violation of the locality criterion. For these
reasons, we consider the extension of the CFR argument to
such systems.

Again, we will restrict ourselves to the case where the
reaction rate ��m1 , . . . ,mn−1� is a homogeneous function of
its arguments of degree �. The Hopf equation corresponding
to Eq. �5� is

� �

�t
− D�2�N�m�

= 

0

�

�
i=1

n−1

dmi��m1, . . . ,mn−1��
i=1

n−1

N�mi����
i=1

n−1

mi − m�
− �n − 1�


0

�

�
i=1

n−2

dmi��m1, . . . ,mn−2,m�N�m��
i=1

n−2

N�mi�

+
J

m0
��m − m0� . �29�

The flux-carrying correlation function is the �n−1�-point cor-
relation function denoted by

C�m1, . . . ,mn−1� = �N�m1� ¯ N�mn−1��, mi � mj .

�30�

By analogy with Eq. �8�, we introduce a quantity
I�m1 , . . . ,mn−1 ;mn�,

I�m1, . . . ,mn−1;mn�

= ��m1, . . . ,mn−1�C�m1, . . . ,mn−1����
i=1

n−1

mi − mn� .

�31�

On taking average in Eq. �29�, the diffusion term drops out.
Then, for m
m0 we can write Eq. �29� as

��N�m��
�t

= 

0

�

�
i=1

n−1

dmi�I�m1, . . . ,mn−1;m�

− �
j=1

n−1

I�m1, . . . ,mj−1,m,mj+1, . . . mn−1;mj�� .

�32�

The Zakharov transformations are

mi →
mmi

mj
, i � j , �33�

mj →
m2

mj
, �34�

one for each of the n−1 negative integrals. They have Jaco-
bians �m /mj�n. Looking for homogeneous solutions,

TABLE I. The numerical values of �−h /2 are shown
for different � and �. The kernel used in ��m1 ,m2�
=max�m1 ,m2�� min�m1 ,m2�. The errors in the values are �0.02.

�

�

−0.250 −0.125 0.000 0.125 0.250 0.375 0.500

−0.25 1.33 1.33 1.35 1.44 1.57 1.69 1.82

0.00 1.34 1.32 1.34 1.45 1.58 1.70 1.83

0.25 1.32 1.31 1.34 1.46 1.58 1.70 1.83

0.50 1.31 1.31 1.33 1.46 1.59 1.70 1.82
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FIG. 5. The dependence on diffusion constant of �2�m ,L� is
shown for n=3 and �=0. The bottom curve corresponds to D�m�
	m0 ��=0� and the top curve corresponds to D�m�	m−1/2

��=−1 /2�. The curves have the same slope. Inset: The variation of
�N�m�� with m is shown. There is a strong dependence on �. The
solid lines have slope �4+�� /3.
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C��m1,�m2, . . . ,�mn−1� = �hC�m1,m2, . . . ,mn−1� �35�

and using the homogeneity exponent of �, we obtain

0 = 

0

�

�
i=1

n−1

dmiI�m1, . . . ,mn−1;m��my − �
i=1

n−1

mi
y� , �36�

where y=−h−�−n+1. We obtain a stationary solution when
h=−�−n. The uniqueness argument of Sec. III is easily ex-
tended to the case of n-ary interactions.

It is cumbersome to discuss in full generality locality for
higher values of n. Instead, we do a mean-field analysis for
n=4 �three particles coalesce to form a new particle� for the
additive kernel ��m1 ,m2 ,m3�=m1

�+m2
�+m3

�. In the mean-
field limit �N�m1�N�m2�N�m3��	�m1m2m3�h/3. When consid-
ering the collision integrals as a function of m1 �say when
m1→��, there is a free integral over m2. This integral being
an integral over a pure power law, will either diverge at � or
at 0. Hence the integrals are no longer finite and the locality
condition will not be satisfied. Physically what happens is
that three-body collisions between three large particles are
overwhelmed by three-body collisions involving two large
particles and one particle of very small mass. Thus the sys-
tem behaves effectively as n=3. One can get over this prob-
lem by introducing local kernels as discussed below.

We now present some numerical results for n=4. We con-
sider additive kernel with �=0, i.e.,

��m1,m2,m3� = 1. �37�

and measure the quantity

�3�m� = 

m

� 

m

�

dm1dm2�N�m�N�m1�N�m2�� . �38�

which has a constant flux scaling of �3�m�	m−2−�.
For �=0, the upper critical dimension is one. Hence, by

the argument above, the locality condition should be violated
and we should get scaling corresponding to n=3. In Fig. 6,
we show the variation of �3�m� with m. The bottom curve
correspond to the above kernel. CFR predicts that �3�m�
	m−2 The bottom curve scales as m−3.0 corresponding to
scaling as predicted by �=0 and n=3.

To restore CFR, we consider a local kernel of the form

��m1,m2,m3� = g�m1

m2
�g�m2

m3
�g�m3

m1
� , �39�

where the dimensionless function is chosen to be

g�x� = exp�x +
1

x
− 2� . �40�

This local kernel has the effect that it suppresses interactions
between masses that are not of the same magnitude. The
results of �3�m� for this local kernel is presented in the top
curve of Fig. 6. As can be seen, CFR is now obeyed. The
inset of Fig. 6 shows that for both the local and nonlocal
kernels �N�m�� has the same scaling. this is again as expected
because both for n=3 and n=4, �N�m��	m−4/3 modulo loga-
rithmic corrections for n=4.

VII. SUMMARY AND CONCLUSIONS

To summarize, we have performed an extensive theoreti-
cal and numerical study of the applicability and conse-
quences of the CFR argument introduced in �16� in the con-
text of cluster-cluster aggregation with a monomer source.
We have used a heuristic scaling argument and an exact
analysis of the appropriate Hopf equation to show that the
scaling of the flux-carrying correlation function in the sta-
tionary state is fixed by the fact that the elementary coales-
cence interactions conserve mass. In the case of cluster-
cluster aggregation, the flux carrying correlation function is
proportional to the probability of n−1 clusters coming to-
gether at the same point in space. It is thus not an esoteric
object but is of direct physical significance.

The CFR scaling exponent is identical to that given by
mean-field theory. It is thus independent of the physical di-
mension and independent of the details of the spatial trans-
port mechanism. This latter fact we have demonstrated
clearly with some numerical simulations of aggregation with
mass-dependent diffusion rates. The importance and non-
triviality of the result lies in the fact that the flux-carrying
correlation function exhibits the mean-field scaling even in
the diffusion-limited regime where mean-field theory fails to
give correct answers for other correlation functions, in par-
ticular for the density. This runs counter to the usual intuition
in interacting particle systems where it is canonical that sta-
tistics are dominated by diffusive fluctuations in low dimen-
sions where mean-field theory breaks down. We do not con-
sider our result to be at odds with this canon. It is indeed the
case that most statistical quantities measured in the diffusion
limited regime will be fluctuation dominated. What we have
shown is that there is a particular special correlation function
which does not feel these fluctuations at all.

The usefulness of this result has already been demon-
strated in our earlier work �11,12� on constant kernel aggre-
gation in low dimensions where it allowed us, taken together
with a known exact result for the density, to prove multiscal-
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FIG. 6. The variation of �3�m� with m is shown for the nonlocal
kernel Eq. �37� �bottom curve� and the local kernel Eq. �39� �top
curve�. The simulations are for n=4. The solid lines have slope −3
and −2. Inset: The variation of �N�m�� with m is shown for the local
and nonlocal kernels. Their scaling with m is independent of the
kernel for large m.
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ing for the statistics of constant kernel aggregation in one
dimension. Given the very direct physical meaning of the
flux-carrying correlation function in the aggregation context,
it seems likely that other applications will arise in concrete
problems. At the very least, one can envisage using the result
as a benchmark for numerical simulations of more compli-
cated aggregation problems, much as the 4 /5 law is used in
validating numerical simulations of turbulence.

As we have stated in our earlier paper, the CFR is not a
theorem. It requires that a criterion which we refer to as
“locality” should hold. To reiterate, by “locality,” we do not
mean that only clusters of equal masses are allowed to coa-
lesce �although such a restriction would certainly ensure that
our criterion is satisfied�. Rather we mean a much weaker
requirement that the mass integrals describing the flux
should not be dominated by their upper or lower limits. In
general, locality is not testable a priori. We have therefore
devoted a considerable amount of effort in this paper to
studying the locality criterion in the context of cluster-cluster
aggregation. From the theoretical perspective, we showed
that if scaling exponents describing a system satisfy locality
at the mean-field level �something which can be checked

a priori� then there is a perturbative neighborhood of models
below the critical dimension for which locality holds. We
then showed numerically that it is satisfied for a range of
kernels in one dimension but breaks down for kernels for
which one would expect long-range �in mass space� interac-
tions to become dominant. We provided an instructive illus-
trative example of how the breakdown in locality may vio-
late CFR using a model kernel where the long-range
interactions may be tuned.

It is rare that a generic nonequilibrium system will be
solvable as the model discussed in the paper. It could be that
the distinction between driving and dissipation scales get
fuzzy �24�, or it could be that identifying the conserved
quantity is a problem. In a recent paper �25�, we studied a
model wherein the dissipation scale in not very well defined,
and conjectured a CFR for such a model, even though it
would not be expected a priori. The consequences of this
conjecture was verified numerically. It would be of interest to
clarify these observations theoretically so that the results of
the present paper might be extended to an even wider class
of models.
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